Mechanism of impaired insulin-stimulated muscle glucose metabolism in subjects with insulin-dependent diabetes mellitus.

نویسندگان

  • G W Cline
  • I Magnusson
  • D L Rothman
  • K F Petersen
  • D Laurent
  • G I Shulman
چکیده

To determine the mechanism of impaired insulin-stimulated muscle glycogen metabolism in patients with poorly controlled insulin-dependent diabetes mellitus (IDDM), we used 13C-NMR spectroscopy to monitor the peak intensity of the C1 resonance of the glucosyl units in muscle glycogen during a 6-h hyperglycemic-hyperinsulinemic clamp using [1-(13)C]glucose-enriched infusate followed by nonenriched glucose. Under similar steady state (t = 3-6 h) plasma glucose (approximately 9.0 mM) and insulin concentrations (approximately 400 pM), nonoxidative glucose metabolism was significantly less in the IDDM subjects compared with age-weight-matched control subjects (37+/-6 vs. 73+/-11 micromol/kg of body wt per minute, P < 0.05), which could be attributed to an approximately 45% reduction in the net rate of muscle glycogen synthesis in the IDDM subjects compared with the control subjects (108+/-16 vs. 195+/-6 micromol/liter of muscle per minute, P < 0.001). Muscle glycogen turnover in the IDDM subjects was significantly less than that of the controls (16+/-4 vs. 33+/-5%, P < 0.05), indicating that a marked reduction in flux through glycogen synthase was responsible for the reduced rate of net glycogen synthesis in the IDDM subjects. 31P-NMR spectroscopy was used to determine the intramuscular concentration of glucose-6-phosphate (G-6-P) under the same hyperglycemic-hyperinsulinemic conditions. Basal G-6-P concentration was similar between the two groups (approximately 0.10 mmol/kg of muscle) but the increment in G-6-P concentration in response to the glucose-insulin infusion was approximately 50% less in the IDDM subjects compared with the control subjects (0.07+/-0.02 vs. 0.13+/-0.02 mmol/kg of muscle, P < 0.05). When nonoxidative glucose metabolic rates in the control subjects were matched to the IDDM subjects, the increment in the G-6-P concentration (0.06+/-0.02 mmol/kg of muscle) was no different than that in the IDDM subjects. Together, these data indicate that defective glucose transport/phosphorylation is the major factor responsible for the lower rate of muscle glycogen synthesis in the poorly controlled insulin-dependent diabetic subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

Regulation of glucose transport in human skeletal muscle.

Glucose transport, the rate limiting step in glucose metabolism in skeletal muscle, is mediated by insulin-sensitive glucose transporter 4 (GLUT4) and can be activated in skeletal muscle by two separate and distinct signalling pathways: one stimulated by insulin and the second by muscle contractions. Skeletal muscle is the principal tissue responsible for insulin-stimulated glucose disposal and...

متن کامل

Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose.

Impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) are intermediate states in glucose metabolism that exist between normal glucose tolerance and overt diabetes. Epidemiological studies demonstrate that the two categories describe distinct populations with only partial overlap, suggesting that different metabolic abnormalities characterize IGT and IFG. Insulin resistance and imp...

متن کامل

An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects.

We have developed an in vitro muscle preparation suitable for metabolic studies with human muscle tissue and have investigated the effects of obesity and non-insulin-dependent diabetes mellitus (NIDDM) on glucose transport. Transport of 3-O-methylglucose and 2-deoxyglucose was stimulated approximately twofold by insulin in muscle from normal nonobese subjects and stimulation occurred in the nor...

متن کامل

The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle.

Defects of glucose transport and phosphorylation may underlie insulin resistance in obesity and non-insulin-dependent diabetes mellitus (NIDDM). To test this hypothesis, dynamic imaging of 18F-2-deoxy-glucose uptake into midthigh muscle was performed using positron emission tomography during basal and insulin-stimulated conditions (40 mU/m2 per min), in eight lean nondiabetic, eight obese nondi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 99 9  شماره 

صفحات  -

تاریخ انتشار 1997